Short Summary of AAAI-18
By kirk86, , 0 comments.

This year AAAI-18 was co-organized with IAAI-18 and EAAI-18. The technical programme for AAAI-18 can be found here. The main categories for AAAI-18 were:

  • Planning and Scheduling (PS)(HSO)
  • Game Theory and Economics (GTEP)
  • Cognitive Systems (CS)(CM)
  • Computational Sustainability (CSAI)(MLA)(ML)
  • Vision and Video Retrieval(VIS)(MLA)(APP)
  • Language and Learning (NLPML)(NLPTM)(KRR)(NLPKR)
  • Policy Learning (ML)(PS)(RU)
  • Knowledge Representation and Reasoning (KR)
  • Classic Paper Award Talk:
  • PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment
  • Machine Learning Applications (MLA)(APP)
  • Machine Learning and Graphical Models (ML)(RU)(NLPML)
  • Reinforcement Learning (ML)(PS)(RU)
  • Search and Constraint Satisfaction (SCS)(HS)
  • What's Hot Talk:
  • What's Hot in ICAPS, SoCS, SAT, CP, IJCAI, and AAMAS
  • What's Hot in AAMAS

1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg

  • What's Hot in SoCS

0.jpg 1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg

  • What's Hot in CP

1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg 7.jpg 8.jpg 9.jpg 10.jpg 11.jpg 12.jpg 13.jpg 14.jpg 15.jpg 16.jpg 17.jpg 18.jpg 19.jpg 20.jpg

  • What's Hot in ICAPS

0.jpg 1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg 7.jpg 8.jpg 9.jpg 10.jpg 11.jpg 12.jpg 13.jpg 14.jpg 15.jpg 16.jpg 17.jpg 18.jpg 19.jpg 20.jpg

  • Security, Trust and Privacy (APP)(ML)(HAC)(NLPML)(HAI)(MLA)
  • Deep Learning and Bayesian Methods (ML)(NLPML)(AIW)
  • Learning Theory (ML)
  • Machine Learning Applications and Recommender Systems (MLA)(ML)(AIW)
  • Relational and Graph-­Based Learning (RU)(ML)
  • Search and Machine Learning (ML)(HSO)(SCS)
  • Learning and Stochastic Processes (ML)(MLA)(APP)(RU)
  • AAAI-­18 Senior Member Track: Blue Sky Papers
  • Engineering Pro-­Sociality with Autonomous Agent(Ana Paiva, Fernando P. Santos, Francisco C. Santos)
  • Learning Fast and Slow: Levels of Learning in General Autonomous Intelligent Agents(John E. Laird, Shiwali Mohan)
  • Imagination Machines: A New Challenge for Artificial Intelligence(Sridhar Mahadevan)
  • AI Meets Chemistry (Akihiro Kishimoto, Beat Buesser, Adi Botea)
  • Clustering-­ What Both Theoreticians and Practitioners Are Doing Wrong (Shai Ben-­David)
  • Multiagent Systems (MAS)(GTEP)
  • Heuristic Search (HSO)(ML)(PS)
  • Uncertainty in AI (RU)(ML)
  • Robotics (ROB)(HAC)(NLPML)(VIS)
  • Unsupervised and Online Learning (ML)
  • Reasoning under Uncertainty (RU)(AIW)(ML)
  • Learning, Uncertainty, and Kernels (RU)(ML)(KR)
  • Search, Constraint Satisfaction, and Optimization (SCS)(HSO)
  • Machine Learning, Preferences, and Ranking (ML)
  • Machine Learning and Time Series (ML)(MLA)(NLPML)
  • An Adversarial Hierarchical Hidden Markov Model for Human Pose Modeling and Generation
  • Dynamic Optimization of Neural Network Structures Using Probabilistic Modeling
  • cw2vec: Learning Chinese Word Embeddings with Stroke n-­gram Information

Invited Talks

  • From Naive Physics to Connotation: Learning and Reasoning about the World using Language (Yejin Choi)
  • How Machines Learn Best from Humans (Charles Isbell)
  • Probabilistic Machine Learning and AI (Zoubin Ghahramani)
  • Actual Causality: A Survey (Joe Halpern)
  • How Should We Evaluate Machine Learning for AI? (Percy Liang)

More detailed overview by David Abel